16 research outputs found

    Using Game Analytics to Measure Student Engagement/Retention for Engineering Education

    Get PDF

    Opportunities and Challenges in Virtual Reality for Remote and Virtual Laboratories

    Get PDF

    Virtual Community Heritage:An Immersive Approach to Community Heritage

    Get PDF
       Our relationship with cultural heritage has been transformed by digital technologies. Opportunities have emerged to preserve and access cultural heritage material while engaging an audience at both regional and global level. Accessibility of technology has enabled audiences to participate in digital heritage curation process. Participatory practices and co-production methodologies have created new relationships between museums and communities, as they are engaged to become active participants in the co-design and co-creation of heritage material. Audiences are more interested in experiences vs services nowadays and museums and heritage organisations have potential to entertain while providing engaging experiences beyond their physical walls. Mixed reality is an emerging method of engagement that has allowed enhanced interaction beyond traditional 3D visualisation models into fully immersive worlds. There is potential to transport audiences to past worlds that enhance their experience and understanding of cultural heritage

    AIOps for a Cloud Object Storage Service

    Full text link
    With the growing reliance on the ubiquitous availability of IT systems and services, these systems become more global, scaled, and complex to operate. To maintain business viability, IT service providers must put in place reliable and cost efficient operations support. Artificial Intelligence for IT Operations (AIOps) is a promising technology for alleviating operational complexity of IT systems and services. AIOps platforms utilize big data, machine learning and other advanced analytics technologies to enhance IT operations with proactive actionable dynamic insight. In this paper we share our experience applying the AIOps approach to a production cloud object storage service to get actionable insights into system's behavior and health. We describe a real-life production cloud scale service and its operational data, present the AIOps platform we have created, and show how it has helped us resolving operational pain points.Comment: 5 page

    Extending the Activity Theory Based Model for Serious Games Design in Engineering to Integrate Analytics

    Get PDF
    Serious Games (SG) have been shown to have instructional potential and a number of formal models, frameworks and methodologies have emerged to support their design and analysis. The Activity Theory-based Model of Serious Games (ATMSG) facilitates a systematic and detailed representation of educational SG describing how game elements are connected together to contribute to pedagogical goals. This paper proposes and presents an extension to the ATMSG framework to facilitate the identification, selection and integration of analytics into serious games. A practical example of the approach in use in the analysis and design phase of a SG for engineering is demonstrated

    Competing at the Cybathlon championship for people with disabilities: Long-term motor imagery brain-computer interface training of a cybathlete who has tetraplegia

    Get PDF
    BACKGROUND: The brain–computer interface (BCI) race at the Cybathlon championship, for people with disabilities, challenges teams (BCI researchers, developers and pilots with spinal cord injury) to control an avatar on a virtual racetrack without movement. Here we describe the training regime and results of the Ulster University BCI Team pilot who has tetraplegia and was trained to use an electroencephalography (EEG)-based BCI intermittently over 10 years, to compete in three Cybathlon events. METHODS: A multi-class, multiple binary classifier framework was used to decode three kinesthetically imagined movements (motor imagery of left arm, right arm, and feet), and relaxed state. Three game paradigms were used for training i.e., NeuroSensi, Triad, and Cybathlon Race: BrainDriver. An evaluation of the pilot’s performance is presented for two Cybathlon competition training periods—spanning 20 sessions over 5 weeks prior to the 2019 competition, and 25 sessions over 5 weeks in the run up to the 2020 competition. RESULTS: Having participated in BCI training in 2009 and competed in Cybathlon 2016, the experienced pilot achieved high two-class accuracy on all class pairs when training began in 2019 (decoding accuracy > 90%, resulting in efficient NeuroSensi and Triad game control). The BrainDriver performance (i.e., Cybathlon race completion time) improved significantly during the training period, leading up to the competition day, ranging from 274–156 s (255 ± 24 s to 191 ± 14 s mean ± std), over 17 days (10 sessions) in 2019, and from 230–168 s (214 ± 14 s to 181 ± 4 s), over 18 days (13 sessions) in 2020. However, on both competition occasions, towards the race date, the performance deteriorated significantly. CONCLUSIONS: The training regime and framework applied were highly effective in achieving competitive race completion times. The BCI framework did not cope with significant deviation in electroencephalography (EEG) observed in the sessions occurring shortly before and during the race day. Changes in cognitive state as a result of stress, arousal level, and fatigue, associated with the competition challenge and performance pressure, were likely contributing factors to the non-stationary effects that resulted in the BCI and pilot achieving suboptimal performance on race day. Trial registration not registered SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12984-022-01073-9
    corecore